Phương Pháp Giải Các Dạng Toán Hàm Số Bậc Nhất Cơ Bản

 

Hàm số bậc nhất là một chương cơ bản nhưng rất quan trọng trong chương trình toán THCS. Chủ đề này luôn xuất hiện trong các kì thi học sinh giỏi cũng như thi tuyển sinh vào lớp 10. Vì vậy, hôm nay Kiến Guru gửi đến bạn đọc bài viết tổng hợp những phương pháp và ví dụ minh họa điển hình kèm lời giải chi tiết. Cùng nhau khám phá nhé:

I. Trọng tâm kiến thức về hàm số bậc nhất.

1. Hàm số bậc nhất là gì?

Hàm số có dạng y=ax+b (image kix pq9fq03w736u) được gọi là hàm số bậc nhất.

2. Tính biến thiên ở hàm số bậc nhất.

– Xét hàm số y=ax=b (a≠0):

– Tập xác định: D=R

– Khi a>0, hàm số đồng biến. Ngược lại, khi a<0, hàm số nghịch biến.

– Ta có bảng biến thiên hàm số:

 

ham-so-bac-nhat-01

3. Đồ thị hàm số.

Hàm số y=ax+b (image kix pq9fq03w736u) có đồ thị là một đường thẳng:

– Hệ số góc là a.
– Cắt trục hoành tại A(-b/a;0).
– Cắt trục tung tại B(0;b)

Đặc biệt, trong trường hợp a=0, hàm số suy biến thành y=b, là một hàm hằng, đồ thị là đường thẳng song song với trục hoành.

Lưu ý: khi cho đường thẳng d có hệ số góc a, đi qua điểm (x0;y0), sẽ có phương trình:

image kix

II. Các dạng toán hàm số bậc nhất tổng hợp.

Dạng 1: Tìm hàm số bậc nhất, xét sự tương giao giữa các đồ thị hàm số bậc nhất.

Phương pháp:

Đối với bài toán xác định hàm số bậc nhất, ta sẽ làm theo các bước:

– Hàm số cần tìm có dạng: y=ax+b (image kix pq9fq03w736u).
– Sử dụng giả thuyết mà đề cho, thiết lập các phương trình thể hiện mối quan hệ giữa a và b.
– Giải hệ vừa thiết lập, ta sẽ có được hàm số cần tìm.

Đối với bài toán tương giao hai đồ thị hàm số bậc nhất: gọi đường thẳng d: y=ax+b (a≠0), đường thẳng d’: y=a’x+b’ (a’≠0), lúc này:

+ d trùng d’ khi và chỉ khi:

image kix iis18195zzoo

+ d song song d’ khi:

image kix

+ d cắt d’ khi a≠a’, lúc này tọa độ giao điểm là nghiệm của hệ:

image kix pb4gw422rw4n

đặc biệt khi image kix g5r8iugkfrz2 thì d vuông góc với d’.

Ví dụ 1: Xét hàm số bậc nhất có đồ thị là đường thẳng d, hãy xác định hàm số biết rằng:

     a. d đi qua điểm (1;3) và (2;-1).
b. d đi qua điểm (3;-2), đồng thời song song với d’: 3x-2y+1=0.
c. d đi qua điểm (1;2), đồng thời cắt tia Ox và tia Oy lần lượt tại M, N thỏa diện tích tam giác OMN là nhỏ nhất.
d. d đi qua (2;-1) và vuông góc với d’: y=4x+3.

Hướng dẫn:

Hàm số có dạng y=ax+b (image kix pq9fq03w736u)

a. Chú ý: một đường thẳng có dạng y=ax+b (image kix pq9fq03w736u), khi đi qua điểm (x0;y0) thì ta sẽ thu được đẳng thức sau: y0=ax0+b

Vì hàm số đi qua hai điểm (1;3) và (2;-1), ta có hệ phương trình:

image kix hs4tucudjvvv

Vậy đáp số là image kix.

b. Dựa vào tính chất hai đường thẳng song song, ta biến đổi d’ về dạng:

image kix rgpuidc56ps2

Do d song song d’, suy ra:

image kix pjpuisacetuy

lại có d đi qua (3;-2), suy ra: image kix vpegk5459dq7, suy ra:

image kix uo0hj83nv09

Ta có thu được hàm số cần tìm.

c. Tọa độ các điểm cắt lần lượt là:

image kix

Do điểm giao nằm trên tia Ox và tia Oy, vì vậy a<0 và b>0

Lúc này, diện tích tam giác được tính theo công thức:

image kix bqlrzu3sl2tk

Theo đề, đồ thị đi qua điểm (1;2), suy ra: 2=a+b ⇒ b=2-a

Thế vào công thức diện tích:

image kix kavd0seojzv5

Vậy diện tích tam giác MNO đạt nhỏ nhất khi:

image kix l2tglgwm57vo

Đáp số cần tìm: image kix v9l6n47n9r6n

Chú ý: ta sử dụng bất đẳng thức Cauchy cho 2 số thực dương để giải bài toán trên, cụ thể: cho hai số thực dương a,b, khi đó ta có bất đẳng thức:

image kix hvy8qkodhtdq

điều kiện xảy ra dấu bằng khi và chỉ khi: a=b

d. Đồ thị đi qua điểm (2;-1) nên: image kix cudmglsifb73

Lại có d vuông góc d’:

 image kix aeysb3jniu3

Vậy ta thu được:

image kix v1du8skyif02

Ví dụ 2: Xét hai đường thẳng d:y=x+2m và d’:y=3x+2.

  1. Xét vị trí tương đối giữa hai đường thẳng vừa cho.
  2. Xác định giá trị của tham số m để 3 đường thẳng d, d’ và d’’ đồng quy, biết rằng:

image kix

Hướng dẫn:

a. Vì 1≠3 (hai hệ số góc khác nhau) nên d và d’ cắt nhau.

Tọa độ giao điểm là nghiệm của:

image kix mel867885skz

Vậy tọa độ giao điểm là  M(m-1;3m-1)

b. Do 3 đường thẳng đồng quy, vậy M ∈d’’. Suy ra:

image kix i5g8vsmtn1qv

Xét:

 m=1, khi đó 3 đường thằng là d:y=x+2; d’: y=3x=2 và d’’: y=-x+2 phân biệt cắt nhau tại (0;2)
m=-3 khi đó d’ trùng với d’’, không thỏa mãn tính phân biệt.

Vậy m=1 là đáp số cần tìm.

Dạng 2: Khảo sát biến thiên và vẽ đồ thị hàm số.

Phương pháp: Dựa vào tính chất biến thiên đã nêu ở mục I để giải.

Ví dụ 1: Cho hàm số sau, xét sự biến thiên:

  1. y=3x+6
  2. x+2y-3=0

Hướng dẫn:

a. Tập xác định D=R

a=3>0, vậy nên hàm số đồng biến trên R.

Bảng biến thiên được vẽ như sau:

ham-so-bac-nhat-03

Vẽ đồ thị: để vẽ đồ thị, ta xác định các điểm đặc biệt mà đồ thị đi qua, cụ thể là hai điểm (-2;0) và (-1;3)

ham-so-bac-nhat-04

b. Ta biến đổi hàm số về dạng:

image kix bf8kpcv80ekp

Tập xác định D=R.

Hệ số góc a<0, hàm số nghịch biến trên R.

Bảng biến thiên:

ham-so-bac-nhat-05

Đồ thị hàm số:

ham-so-bac-nhat-06

Dạng 3: Hàm số bậc nhất chứa dấu giá trị tuyệt đối.

Phương pháp:

Xét đồ thị hàm số có dạng image kix, để vẽ đồ thị này, ta có thể thực hiện theo các cách sau:

Cách 1: Vẽ đồ thị (C1) của hàm số y=ax+b với các tọa độ x thỏa mãn ax+b≥0. Tiếp tục vẽ đồ thị (C2) của hàm số y= -ax-b ở các tọa độ x thỏa mãn ax+b<0. Đồ thị © cần tìm là hợp của đồ thị (C1) và (C2).

Cách 2: Vẽ đồ thị (C’) của hàm số y=ax+b, lấy đối xứng phần đồ thị (C’) nằm dưới trục hoành qua trục hoành, rồi xóa toàn bộ phần đồ thị nằm phía dưới trục hoành. Phần đồ thị còn lại là đồ thị © cần tìm.

Mở rộng:

Cho trước đồ thị (C) : y=f(x). Khi đó:

  • Để vẽ đồ thị (C’) của y=f(|x|), ta thực hiện:
    • Giữ đồ thị (C) bên phải trục tung.
    • Lấy đối xứng phần đồ thị ở bên trái trục tung qua trục tung, sau đó, xóa phần bên trái đi.
  • Để vẽ đồ thị (C2) của hàm số y=|f(x)|, ta thực hiện:
    • Giữ phần đồ thị bên trên trục hoành.
    • Lấy đối xứng phần đồ thị bên dưới trục hoành qua trục hoành, sau đó xóa phần bên dưới trục hoành đi.

Ví dụ: Vẽ đồ thị:

  1. image kix 73kctmtngadt
  2. image kix 4350zgyu6td0

Hướng dẫn:

a. Khi x≥0, hàm số có dạng y=2x. Đồ thị là phần đường thẳng đi qua (0;0) và (1;2) (chú ý chỉ lấy phần bên phải của đường thẳng x=0)

– Khi x<0, hàm số có dạng y=-x. Đồ thị là phần đường thẳng đi qua (-1;1) và (-2;2) (chú ý lấy phần nằm bên trái đường thẳng x=0)

ham-so-bac-nhat-07

b. Ta vẽ đường thẳng y=-3x+3 và đường thẳng y=3x-3. Sau đó xóa phần đồ thị nằm dưới trục hoành, ta sẽ thu được đồ thị cần tìm.

ham-so-bac-nhat-08

Trên đây là tổng hợp các phương pháp cơ bản nhất để giải các dạng toán Hàm số bậc nhất. Hy vọng qua bài viết này, các bạn sẽ tự củng cố cũng như rèn luyện thêm cho mình tư duy, định hướng khi giải toán. Ngoài ra các bạn có thể tham khảo thêm những bài viết khác trên trang của Kiến Guru để học thêm nhiều điều bổ ích. Chúc các bạn học tập tốt.

 

99 lượt thích

chi tiet bai viet

Tin bài liên quan

Tin tức có thể bạn quan tâm:

Nhẹ nhàng chạm mốc 8+ môn Toán

+ Dành cho lớp 12 – 2k5
+ Giáo viên
NGUYỄN VĂN THẾ
– 9 năm kinh nghiệm luyện thi ĐH
– Giảng viên dạy Toán trên đài VTV
– 25.000+ học sinh chinh phục điểm 8+
35.943 HỌC SINH ĐÃ ĐĂNG KÝ

NHẸ NHÀNG CHẠM MỐC 8+ MÔN TOÁN

+ Dành cho lớp 12 – 2K5
+ Giáo viên
NGUYỄN VĂN THẾ
– 9 năm kinh nghiệm luyện thi ĐH
– Giảng viên dạy Toán trên đài VTV
– 25.000+ học sinh chinh phục điểm 8+
35.943 HỌC SINH ĐÃ ĐĂNG KÝ